This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Keio University Global Innovator Acceleration Program 2015

Preliminary Assignment for Day 6: Business Synthesis

Graduate School of System Design and Management EDGE Program Team

2015 Keio EDGE 1

Business Model

What is Business Model?

- "A business model describes the rationale of how an organization creates, delivers, and captures value."
 - Alex Osterwalder et al "Business Model Generation"

Business Model Patterns

- There are major business model patterns.
 - multi-sided platforms
 - the long tail
 - free / bait & hook
 - no frills
- Knowing existing business model patterns helps you.
 - a source of inspiration for your own work with business models

Multi-sided platforms

 Offers different solutions to different platforms

- Google: Searchers and Advertisers
- Recruit: Job hunters and Recruiters
- Can creates customer value to one group only if the other also presents.

The long tail

- Enjoy huge amount of profit from large number of niche products (instead of traditional 80/20 rule)
- Internet made it possible
 - virtually no limitation of showcase space

Bait & Hook (餌と釣り針)

- Offers a basic product or service at a very low price (the bait), and then taking profit from refills or associated products or services (the hook).
- Bait (photocopy machine)
 & hook (toner cartridge)
- Bait (T-shaped shaver) & hook (razor blade)

Freemium

- A derivative of "bait & hook"
- Free + premium
- Give away a core product for free and then generate revenue by selling premium products

No frills

- Remove non-essential feature to reduce costs
- Operational excellence is needed to make it possible
 - 15 minutes turn of SWA
 - 10 minutes cut of QB house

Business Model Canvas

Business Model Canvas

 Business Model Canvas is a communication tool for describing, visualizing, assessing, and improving business models.

- It doesn't create any business model by itself, it's a communication tool
 - easy to collaborate
 - easy to look

Customer Segments (CS)

 The Customer Segments defines the different groups of people or organizations an enterprise aims to reach and serve

Value Propositions (VP)

 The Value Propositions describes the bundle of products and services that create value for a specific customer segment

Channels (CH)

 The Channels describes how a company communicates with and reaches its Customer Segments to deliver a Value Propositions

Customer Relationships (CR)

 The Customer Relationships describes the types of relationships a company establishes with specific Customer Segments

Revenue Streams (R\$)

 The Revenue Streams represents the cash a company generates from each Customer Segment

Key Resources (KR)

 The Key Resources describes the most important assets required to make a business model work

Key Activities (KA)

 The Key Activities describes the most important things a company must do to make its business model work

Key Partnerships (KP)

 The Key Partnerships describes the network of suppliers and partners that make the business model work

Cost Structures (C\$)

The Cost Structures describes all costs incurred to operate a business model

Business Model Canvas

Managerial Accounting

Accounting and Finance

- Entrepreneurs need to be familiar with accounting and finance for;
 - making right decisions
 - doing communications with stakeholders

Managerial Accounting

Cost behavior: variable costs and fixed costs

 Costs could be split into variable costs and fixed costs based on cost behavior

Example: supermarkets

- Cost of Goods Sold
- Plastic bags/brown bags

- Rent expense
- Personnel expense for cashers and staff
- Cost for lighting, power, and water

Example: steel-manufacturing company

- Raw materials
- Gas, oil, electricity and water expense for production
- Processing cost
- Subcontract cost for manufacturing

27

- Office rent expense
- Depreciation cost
- Personnel expense for nonmanufacturing staff

Example: Consulting Firm

Marginal profit

 After dividing costs into variable and fixed cost, you can calculate marginal profit.

Marginal profit changes depending on revenue/production increase or decrease

Break-Even Point

損益分岐点 Break-Even Point = The point at which revenue equal to total costs (zero profit)

Break-Even Point

 You can calculate break even point by using the following formula.

```
BEP Revenue — variable cost — fixed cost = 0

Marginal profit = fixed cost

BEP Revenue x marginal profit ratio = fixed cost

BEP revenue = fixed cost / marginal profit ratio
```


BEP calculation

Q:

Calculate break-even points of the following two companies. (round the number)

Company A		Company B	Company B		
• Revenue	100	• Revenue	100		
CostVariable costFixed cost	80 30 50	CostVariable costFixed cost	80 50 30		
• Profit	20	• Profit	20		

BEP calculation

Company A

BEP revenue = approx. **71**

Marginal profit ratio

- = marginal profit/revenue
- = (100-30)/100
- = 70%

BEP revenue

- = fixed cost / marginal profit ratio
- = 50 / 70%
- **⇒ 71**

Company B

BEP revenue = **60**

Marginal profit ratio

- = marginal profit/revenue
- = (100-50)/100
- = 50%

BEP revenue

- = fixed cost / marginal profit ratio
- = 30 / 50%
- **= 60**

Cost Structure

High fixed cost/Low variable cost

- Higher BEP
- Once BEP is exceeded, you can enjoy higher profit

Low fixed cost/High variable cost

- Lower BEP
- After BEP is exceeded, you can enjoy only skinny profit

MQ(Margin-Quantity) Accounting

An Italian Restaurant Case Study

- P: Price
 - Revenue per customer
- V: Variable cost
 - Cost of food materials and etc.
- M: Marginal profit
 - Price minus variable cost
- Q: Quantity
 - Number of customers
- F: Fixed cost
 - Personnel cost, rent cost, water, gas and electricity cost
- G: Gain
 - final profit

Quantity down

- Volume is decreased by 10% because of a brand new restaurant's open
- How will the following numbers be changed?

X

Unit Economics (yen)

Volume (persons)

Whole Economics

(thou.yen)

PQ 3,000	VQ 2,000		
	MQ 1,000	F 800	
		G 200	

Quantity down

- Quantity is decreased by 10%
- Gain is remained at +100 thou. yen (50% decrease)

X

Unit Economics (yen) P V 3,000 2,000

M 1,000 Volume (persons)

Q 900 = Whole Economics

(thou.yen)

Price down

- You don't want to lose your customers by 10%. Then, you cut down P by 10% instead. Assume Q is not changed.
- How will the following numbers be changed?

X

Unit Economics (yen)

Volume (persons)

Whole Economics (thou. yen)

Price down

• By cutting down P by 10%, final profit G goes to negative (-100 thou. yen).

Unit Economics (yen)

Volume (persons)

X

Whole Economics

(thou.yen)

PQ 2,700	VQ 2,000		
	MQ 700	F 800	
		G -100	

2015

Quantity Up

- In order to go back to break-even point (zero profit) from this situation below, how many Q is needed?
- Calculate Q at the point in which G=0 (i.e. MQ=F)

Unit Economics (yen) P V 2,700 2,000

M

700

Volume (persons)

Whole Economics

(thou. yen)

Quantity Up

- In order to reach break-even point, you need to increase Q to 1,143 (by 14.3%).
- Q=1,143 is the break-even point Q

Keio FDGF

4 Break-Even Points

 You can calculate four kinds of break-even points (BEP P, Q, V and F)

Sensitivity of Levers

• In the Italian restaurant case, the most sensitive lever is P.

Rank	Levers	Status Quo	BEP	Sensitivity
1	P	@3,000yen	@2,800yen	6.7%
2	V	@2,000yen	@2200yen	10%
3	Q	1,000	800	↓ 20%
4	F	800,000yen	100,000yen	1 25%

Difference by cost structure

- Sensitivity of levers is different depending on cost structure
- P is the most sensitive lever in each case

Research in Japanese companies

McKinsey research shows that <u>P is the most sensitive lever</u> in an average Japanese company (the research based on all the TSE 1st section listed companies)

Q: "By improving four levers: P, V, Q & F only **by 1%**, **how much EBIT* would be improved**?"

EOF